Abstract

In this study, we propose a new and effective methodology for improving the resistive-switching performance of memory devices by high-pressure hydrogen annealing under ambient conditions. The reduction effect results in the uniform creation of oxygen vacancies that in turn enable forming-free operation and afford uniform switching characteristics. In addition, H+ and mobile hydroxyl (OH−) ions are generated, and these induce fast switching operation due to the higher mobility compared to oxygen ions. Defect engineering, specifically, the introduction of hydrogen atom impurities, improves the device performance for metal–oxide-based resistive-switching random access memory devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call