Abstract
Resistive-switching random access memory (RRAM) devices are attracting increasing interest as a potential candidate for high-density nonvolatile memory devices. One of the main issues toward RRAM feasibility is the reduction of the reset current <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">I</i> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">reset</sub> necessary to restore the high-resistance state in the device. <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">I</i> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">reset</sub> can be reduced by controlling the size of the conductive filament responsible for the low-resistance state; however, available data only focus on direct-current reset analysis. This letter addresses <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">I</i> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">reset</sub> reduction under pulsed operation. Unstable reset behaviors, including set-reset and set instability, are shown to occur during relatively fast pulses and starting from set states with relatively large resistance values. These instability effects limit <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">I</i> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">reset</sub> reduction, posing a potential issue of minimum reset current achievable in RRAM devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.