Abstract
The defect engineering is essential for the development of efficient cathode catalysts for lithium-oxygen batteries. Herein, CuS1 -x nanoflowers are fabricated by microwave hydrothermal method. Through theoretical and experimental analysis, the S vacancies are observed, which result in augmented charge around Cu, improved adsorption of LiO2, and reduced overpotential. On the one hand, the generated electronic defects cause the Fermi level to shift toward the conduction band, which enhances the electronic conductivity and ion transfer. On the other hand, the increased S vacancies provide a large number of Cu active sites, which increase the charge transfer from Cu to LiO2, which improves the stability of the intermediate adsorption. Interactively, CuS1- x catalyst obtains a capacity of 23,227 mAh g-1 and a cycle life of 225 at 500mA g-1. This work will be helpful for obtaining an efficient cathode catalyst by providing a deep understanding of vacancy modulation in advanced catalysts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.