Abstract

As energy and CO2 concerns have become important aspects of scientific research, researchers are focusing on the development of alternative and green energies. Biomass is a significant energy source due to its cyclic utilization process and ability to renew CO2. The catalytic transfer hydrogenation (CTH) of sugar-derived furfural (FF) into furfuryl alcohol (FA) has attracted increasing attention; however, designing and synthesizing efficient nonnoble catalysts remains challenging. In this work, an oxygen defect-abundant LaMnO3 perovskite (R-LM4C-3h) was synthesized by combining the advantages of both Co heteroatom doping and H2 reduction. Raman, O2 temperature programmed desorption (O2-TPD), X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR), and electrochemical impedance spectroscopy (EIS) characterizations revealed that R-LM4C-3h exhibited abundant oxygen defects that improved its electronic properties. As a result, adsorption ability for FF was enhanced, the reaction energy barrier was decreased, and CTH catalytic activity was promoted. A 93.6 mol% FA yield with 100 % FF conversion was achieved using ethanol as the hydrogen source. The oxygen defect-mediated catalyst also exhibited excellent stability with almost no activity reduction after 5 cycles. This surface reconstruction strategy for obtaining perovskites by fabricating abundant oxygen defects provides a superior opportunity to better explore the structure–function relationship of catalysts and develop efficient nonnoble metal-based catalysts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call