Abstract

High conversion efficiency over a wide operating potential window is important for the practical application of CO2 reduction electrocatalysis, yet that remains a huge challenge in differentiating the competing CO2 reduction and H2 evolution. Here we introduce point defects (Sn doping) and planar defects (grain boundary) into the Cu substrate. This multidimensional defect integration strategy guides the fabrication of highly diluted SnCu polycrystal, which exhibits high Faradaic efficiencies (>95%) toward CO2 electroreduction over an ultrawide potential window (ΔE = 1.3 V). The theoretical study indicates that the introduction of Sn doping and grain boundary synergistically provides an optimized electronic effect, which helps suppress H2 evolution and promotes the hydrogenation of *CO2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call