Abstract

ABSTRACT Accurate detection and characterisation of defects in high-density polyethylene (HDPE) materials are important for the safety of industrially critical structures. Ultrasonic non-destructive evaluation (UNDE) has proven to be a powerful tool for detecting and characterising defects in engineered materials. However, efficient and high-precision defect imaging in these highly attenuating materials remains a significant challenge for UNDE. Least-squares reverse time migration (LSRTM) offers the potential to reconstruct high-precision images of reflectivity. Yet, the conventional LSRTM iteratively updates the reflectivity model by minimising the data residuals, making it computationally expensive. In this paper, an efficient ultrasonic LSRTM algorithm within a deep learning framework is proposed. Building upon this, a generative adversarial network (GAN) is integrated to further enhance the reconstruction results by reducing artefacts in the images. Simulation and experimental results show that the proposed ultrasonic LSRTM-GAN can generate high-quality images, effectively enabling precise defect detection in HDPE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.