Abstract

Quality products are very influential in creating profits for the company and are also closely related to the level of customer satisfaction. The higher the quality of the products produced by a company, the higher the satisfaction felt by consumers. The biggest challenge in the production process is achieving good quality with a product defect rate close to zero defect. Defects in the product are usually small. This is of course very difficult for workers to inspect each product for a long time. Thus, manual inspection is certainly ineffective and inefficient because humans have a saturation point and get tired if they work for a long time. Previous research on detecting defective objects using image processing has been carried out but has not been able to detect up to the shape and size, while in this study it can detect up to the shape and size. Therefore, to implement an automatic product defect detection system we will use image processing and RFID technology. Image processing is processing on the image using a computer so that the image quality becomes better and produces value information for each color. Image processing techniques consist of image conversion from RGB to grayscale, thresholding (binarization), and morphological operations (segmentation). While RFID is an identification method by using a means called an RFID label or transponder to store and retrieve data remotely This study aims to implement a control system on HMI and also a detection system on defect products using a visual inspection system with the aim of getting the machine effectiveness value. One method to get this value is the Overall Equipment Effectiveness (OEE) method. It is proven by implementing a visual inspection system that gets an accuracy rate of 95.97% to detect rejected products and optimize the OEE presentation value obtained. In this study, the implementation of the production monitoring system was successfully implemented with an average OEE value of 52.49%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.