Abstract

Transmission electron microscopy is used to reveal threading defects in single crystal c-oriented GaN nanorods grown on (0001)sapphire by molecular beam epitaxy. The defects are shown to be planar faults lying on {101¯0} planes and bounded by opposite partial screw dislocations with Burgers vectors of 1/2⟨0001⟩. The faults nucleate, as dislocation half-loops, from points close to the GaN/(0001)sapphire interface. It is proposed that the spiral growth of the partial atomic step joining the emerging dislocations controls nanorod growth and accounts for the growth surface morphology. The significance of these defects for nanorod growth and applications is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.