Abstract

The characteristics of structural defects observed on (100) wafers in β-Ga2O3 single crystals grown by directional solidification in a vertical Bridgman furnace were studied in terms of crystal growth conditions. No high-dislocation-density regions near the wafer periphery were observed owing to the lack of adhesion between the as-grown crystal ingot surface and the crucible inner wall, and directional solidification growth in a crucible with a very low temperature gradient resulted in β-Ga2O3 single crystals with a low mean dislocation density of 2.3 × 103 cm−2. Line-shaped defects up to 150 µm long in the [010] direction were detected at a mean density of 0.5 × 102 cm−2, which decreased with decreasing growth rate. The line-shaped defect structure and formation mechanism were discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.