Abstract

Ultra-high purity (> 99.9999 wt%) chemical vapour deposited tungsten (CVDW) samples were neutron irradiated in the BR2 reactor (Belgium) at Tirr < 210 °C to ~ 0.15 dpa, followed by isochronal annealing at 500, 800 and 1100 °C. Defect characterization showed that dislocation loops dominated the as-irradiated damage microstructure and were mostly ≤5 nm. Void formation was observed after post-irradiation annealing at 1100 °C. The mechanical and thermal properties of CVD-W were evaluated based on tensile tests, Vickers hardness and temperature wave analysis. Fractography study suggested that a transition from intergranular fracture to cleavage fracture took place in the material after neutron irradiation. Hardening was found ~ 23% after irradiation. Subsequent annealing below 800 °C saw further increase in hardness, featuring a maximum value of about Hv = 487. Softening occurred at 1100 °C. Thermal diffusivity dropped by ~ 65% after irradiation and ~ 40% of this degradation recovered at 1100 °C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.