Abstract
We propose a mechanism for defect-assisted covalent binding of graphene to the surface of amorphous silica (a-SiO(2)) based on first-principles density functional calculations. Our calculations show that a dioxasilirane group (DOSG) on a-SiO(2) may react with graphene to form two Si-O-C linkages with a moderate activation barrier (≈0.3 eV) and considerable exothermicity (≈1.0 eV). We also examine DOSG formation via the adduction of molecular O(2) to a silylene center, which is an important surface defect in a-SiO(2) , and briefly discuss modifications in the electronic structure of graphene upon the DOSG-assisted chemical binding onto the a-SiO(2) surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.