Abstract

Transfer learning is prevalent as a technique to efficiently generate new models (Student models) based on the knowledge transferred from a pre-trained model (Teacher model). However, Teacher models are often publicly available for sharing and reuse, which inevitably introduces vulnerability to trigger severe attacks against transfer learning systems. In this article, we take a first step towards mitigating one of the most advanced misclassification attacks in transfer learning. We design a distilled <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">differentiator</i> via activation-based network pruning to enervate the attack transferability while retaining accuracy. We adopt an ensemble structure from variant differentiators to improve the defence robustness. To avoid the bloated ensemble size during inference, we propose a two-phase defence, in which inference from the Student model is first performed to narrow down the candidate differentiators to be assembled, and later only a small, fixed number of them can be chosen to validate clean or reject adversarial inputs effectively. Our comprehensive evaluations on both large and small image recognition tasks confirm that the Student models with our defence of only 5 differentiators are immune to over 90% of the adversarial inputs with an accuracy loss of less than 10%. Our comparison also demonstrates that our design outperforms prior problematic defences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.