Abstract
A long standing problem in the modeling of non-Newtonian hydrodynamics of polymeric flows is the availability of reliable and interpretable hydrodynamic models that faithfully encode the underlying micro-scale polymer dynamics. The main complication arises from the long polymer relaxation time, the complex molecular structure and heterogeneous interaction. DeePN$^2$, a deep learning-based non-Newtonian hydrodynamic model, has been proposed and has shown some success in systematically passing the micro-scale structural mechanics information to the macro-scale hydrodynamics for suspensions with simple polymer conformation and bond potential. The model retains a multi-scaled nature by mapping the polymer configurations into a set of symmetry-preserving macro-scale features. The extended constitutive laws for these macro-scale features can be directly learned from the kinetics of their micro-scale counterparts. In this paper, we develop DeePN$^2$ using more complex micro-structural models. We show that DeePN$^2$ can faithfully capture the broadly overlooked viscoelastic differences arising from the specific molecular structural mechanics without human intervention.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.