Abstract

Artificial intelligence (AI)-based computational techniques allow rapid exploration of the chemical space. However, representation of the compounds into computational-compatible and detailed features is one of the crucial steps for quantitative structure-activity relationship (QSAR) analysis. Recently, graph-based methods are emerging as a powerful alternative to chemistry-restricted fingerprints or descriptors for modeling. Although graph-based modeling offers multiple advantages, its implementation demands in-depth domain knowledge and programming skills. Here we introduce deepGraphh, an end-to-end web service featuring a conglomerate of established graph-based methods for model generation for classification or regression tasks. The graphical user interface of deepGraphh supports highly configurable parameter support for model parameter tuning, model generation, cross-validation and testing of the user-supplied query molecules. deepGraphh supports four widely adopted methods for QSAR analysis, namely, graph convolution network, graph attention network, directed acyclic graph and Attentive FP. Comparative analysis revealed that deepGraphh supported methods are comparable to the descriptors-based machine learning techniques. Finally, we used deepGraphh models to predict the blood-brain barrier permeability of human and microbiome-generated metabolites. In summary, deepGraphh offers a one-stop web service for graph-based methods for chemoinformatics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.