Abstract

Background and purposeHigher magnetic field strength introduces stronger magnetic field inhomogeneities in the brain, especially within temporal lobes, leading to image artifacts. Particularly, T2-weighted fluid-attenuated inversion recovery (FLAIR) images can be affected by these artifacts. Here, we aimed to improve the FLAIR image quality in temporal lobe regions through image processing of multiple contrast images via machine learning using a neural network. MethodsThirteen drug-resistant MR-negative epilepsy patients (age 29.2 ± 9.4y, 5 females) were scanned on a 7 T MRI scanner. Magnetization-prepared (MP2RAGE) and saturation-prepared with 2 rapid gradient echoes, multi-echo gradient echo with four echo times, and the FLAIR sequence were acquired. A voxel-wise neural network was trained on extratemporal-lobe voxels from the acquired structural scans to generate a new FLAIR-like image (i.e., deepFLAIR) with reduced temporal lobe inhomogeneities. The deepFLAIR was evaluated in temporal lobes through signal-to-noise (SNR), contrast-to-noise (CNR) ratio, the sharpness of the gray-white matter boundary and joint-histogram analysis. Saliency mapping demonstrated the importance of each input image per voxel. ResultsSNR and CNR in both gray and white matter were significantly increased (p < 0.05) in the deepFLAIR's temporal ROIs, compared to the FLAIR. The gray-white matter boundary sharpness was either preserved or improved in 10/13 right-sided temporal regions and was found significantly increased in the ROIs. Multiple image contrasts were influential for the deepFLAIR reconstruction with the MP2RAGE second inversion image being the most important. ConclusionsThe deepFLAIR network showed promise to restore the FLAIR signal and reduce contrast attenuation in temporal lobe areas. This may yield a valuable tool, especially when artifact-free FLAIR images are not available.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.