Abstract

Advancements in deep learning techniques and the availability of free, large databases have made it possible, even for non-technical people, to either manipulate or generate realistic facial samples for both benign and malicious purposes. DeepFakes refer to face multimedia content, which has been digitally altered or synthetically created using deep neural networks. The paper first outlines the readily available face editing apps and the vulnerability (or performance degradation) of face recognition systems under various face manipulations. Next, this survey presents an overview of the techniques and works that have been carried out in recent years for deepfake and face manipulations. Especially, four kinds of deepfake or face manipulations are reviewed, i.e., identity swap, face reenactment, attribute manipulation, and entire face synthesis. For each category, deepfake or face manipulation generation methods as well as those manipulation detection methods are detailed. Despite significant progress based on traditional and advanced computer vision, artificial intelligence, and physics, there is still a huge arms race surging up between attackers/offenders/adversaries (i.e., DeepFake generation methods) and defenders (i.e., DeepFake detection methods). Thus, open challenges and potential research directions are also discussed. This paper is expected to aid the readers in comprehending deepfake generation and detection mechanisms, together with open issues and future directions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.