Abstract

Identification of drug-target interactions (DTIs) plays a key role in drug discovery. The high cost and labor-intensive nature of in vitro and in vivo experiments have highlighted the importance of in silico-based DTI prediction approaches. In several computational models, conventional protein descriptors have been shown to not be sufficiently informative to predict accurate DTIs. Thus, in this study, we propose a deep learning based DTI prediction model capturing local residue patterns of proteins participating in DTIs. When we employ a convolutional neural network (CNN) on raw protein sequences, we perform convolution on various lengths of amino acids subsequences to capture local residue patterns of generalized protein classes. We train our model with large-scale DTI information and demonstrate the performance of the proposed model using an independent dataset that is not seen during the training phase. As a result, our model performs better than previous protein descriptor-based models. Also, our model performs better than the recently developed deep learning models for massive prediction of DTIs. By examining pooled convolution results, we confirmed that our model can detect binding sites of proteins for DTIs. In conclusion, our prediction model for detecting local residue patterns of target proteins successfully enriches the protein features of a raw protein sequence, yielding better prediction results than previous approaches. Our code is available at https://github.com/GIST-CSBL/DeepConv-DTI.

Highlights

  • The identification of drug-target interactions (DTIs) plays a key role in the early stage of drug discovery

  • Identification of DTIs is a crucial step in drug discovery

  • The detected local features of protein sequences perform better than other protein descriptors for DTI prediction and previous models for predicting PubChem independent

Read more

Summary

Introduction

The identification of drug-target interactions (DTIs) plays a key role in the early stage of drug discovery. With the accumulation of drugs, targets, and interaction data, various computational methods have been developed for the prediction of possible DTIs to aid in drug discovery. Studies have examined several similarity-based methods in which it was assumed that drugs bind to proteins similar to known targets and vice versa. In addition to substantially reducing the computational complexity, this model exhibited higher performance than the previous model [4]. As another approach to DTI prediction models, matrix factorization methods have been recruited to predict DTIs, which approximate multiplying two latent matrices representing the compound and target protein to an interaction matrix and similarity score matrix [5, 6]. Some proteins do not show strong sequence similarity with proteins sharing an identical interacting compound [8]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.