Abstract
With the development of deep learning-based steganalysis, video steganography is facing with great challenges. To address the insufficient security against steganalysis of existing deep video steganography, given that the video has both spatial and temporal dimensions, this paper proposes a deep video steganography method using temporal frame selection and spatial sparse adversarial attack. In temporal dimension, a stego frame selection module based on temporal attention is designed to calculate the weight of each frame and selects frames with high weights for message and sparse perturbation embedding. In spatial dimension, sparse adversarial perturbations are performed in the selected frames to improve the ability of resisting steganalysis. Moreover, to control the adversarial perturbations’ sparsity flexibly, an intra-frame dynamic sparsity threshold mechanism is designed by using percentile. Experimental results demonstrate that the proposed method effectively enhances the visual quality and security against steganalysis of video steganography and has controllable sparsity of adversarial perturbations.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have