Abstract

This paper proposes a resource allocation scheme for hybrid multiple access involving both orthogonal multiple access and non-orthogonal multiple access (NOMA) techniques. The proposed resource allocation scheme employs multi-agent deep reinforcement learning (MA-DRL) to maximize the sum-rate for all users. More specifically, the MA-DRL-based scheme jointly allocates subcarrier and power resources for users by utilizing deep Q networks and multi-agent deep deterministic policy gradient networks. Meanwhile, an adaptive learning determiner mechanism is introduced into our allocation scheme to achieve better sum-rate performance. However, the above deep reinforcement learning adopted by our scheme cannot optimize parameters quickly in the new communication model. In order to better adapt to the new environment and make the resource allocation strategy more robust, we propose a transfer learning scheme based on deep reinforcement learning (T-DRL). The T-DRL-based scheme allows us to transfer the subcarrier allocation network and the power allocation network collectively or independently. Simulation results show that the proposed MA-DRL-based resource allocation scheme can achieve better sum-rate performance. Furthermore, the T-DRL-based scheme can effectively improve the convergence speed of the deep resource allocation network.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call