Abstract

We consider the problem of channel estimation in low-resolution multiple-input multiple-output (MIMO) systems operating at millimeter wave (mmWave) and present a deep transfer learning (DTL) approach that exploits previously trained models to speed up site adaptation. The proposed model is composed of a feature extractor and a regressor, with only the regressor requiring training for the new environment. The DTL approach is evaluated using two 3D scenarios where ray-tracing is performed to generate the mmWave MIMO channels used in the simulations. Under the defined testing setup, the proposed DTL approach can reduce the computational cost of the training stage without decreasing the estimation accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.