Abstract
AbstractDespite a global fossil record, Metatheria are now largely restricted to Australasia and South America. Most metatherian paleodiversity studies to date are limited to particular subclades, time intervals, and/or regions, and few consider uneven sampling. Here, we present a comprehensive new data set on metatherian fossil occurrences (Barremian to end Pliocene). These data are analyzed using standard rarefaction and shareholder quorum subsampling (including a new protocol for handling Lagerstätte-like localities).Global metatherian diversity was lowest during the Cretaceous, and increased sharply in the Paleocene, when the South American record begins. Global and South American diversity rose in the early Eocene then fell in the late Eocene, in contrast to the North American pattern. In the Oligocene, diversity declined in the Americas, but this was more than offset by Oligocene radiations in Australia. Diversity continued to decrease in Laurasia, with final representatives in North America (excluding the later entry ofDidelphis virginiana) and Europe in the early Miocene, and Asia in the middle Miocene. Global metatherian diversity appears to have peaked in the early Miocene, especially in Australia. Following a trough in the late Miocene, the Pliocene saw another increase in global diversity. By this time, metatherian biogeographic distribution had essentially contracted to that of today.Comparison of the raw and sampling-corrected diversity estimates, coupled with evaluation of “coverage” and number of prolific sites, demonstrates that the metatherian fossil record is spatially and temporally extremely patchy. Therefore, assessments of macroevolutionary patterns based on the raw fossil record (as in most previous studies) are inadvisable.
Highlights
Therian mammals comprise the Metatheria and Eutheria, represented today by the crown clades marsupials and placentals, respectively, and belong to the boreosphenidan clade of tribosphenic mammals that is thought to have originated on the northern landmass of Laurasia (Luo et al 2001; Williamson et al 2014)
No significant correlations were found between time-bin length and raw diversity for the global, North American, or South American data sets (Supplementary Data)
Caution is required, these results suggest that it is valid to analyze the diversity of Metatheria using the available time bins of unequal length
Summary
Therian mammals comprise the Metatheria and Eutheria, represented today by the crown clades marsupials and placentals, respectively, and belong to the boreosphenidan clade of tribosphenic mammals that is thought to have originated on the northern landmass of Laurasia (Luo et al 2001; Williamson et al 2014). Despite their shared evolutionary history, marsupials and placentals have disparate modern diversities.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have