Abstract

Acute ischemic stroke (AIS) results in high morbidity, disability, and mortality. Early and automatic diagnosis of AIS can help clinicians administer the appropriate interventions. To develop a deep symmetric 3D convolutional neural network (DeepSym-3D-CNN) for automated AIS diagnosis via diffusion-weighted imaging (DWI) images. This study includes 190 study subjects (97 AIS and 93 Non-AIS) by collecting both DWI and Apparent Diffusion Coefficient (ADC) images. 3D DWI brain images are split into left and right hemispheres and input into two paths. A map with 125×253×14×12 features is extracted by each path of Inception Modules. After the features computed from two paths are subtracted through L-2 normalization, four multi-scale convolution layers produce the final predation. Three comparative models using DWI images including MedicalNet with transfer learning, Simple DeepSym-3D-CNN (each 3D Inception Module is replaced by a simple 3D-CNN layer), and L-1 DeepSym-3D-CNN (L-2 normalization is replaced by L-1 normalization) are constructed. Moreover, using ADC images and the combination of DWI and ADC images as inputs, the performance of DeepSym-3D-CNN is also investigated. Performance levels of all three models are evaluated by 5-fold cross-validation and the values of area under ROC curve (AUC) are compared by DeLong's test. DeepSym-3D-CNN achieves an accuracy of 0.850 and an AUC of 0.864. DeLong's test of AUC values demonstrates that DeepSym-3D-CNN significantly outperforms other comparative models (p < 0.05). The highlighted regions in the feature maps of DeepSym-3D-CNN spatially match with AIS lesions. Meanwhile, DeepSym-3D-CNN using DWI images presents the significant higher AUC than that either using ADC images or using DWI-ADC images based on DeLong's test (p < 0.05). DeepSym-3D-CNN is a potential method for automatically identifying AIS via DWI images and can be extended to other diseases with asymmetric lesions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.