Abstract
We use deep supervised learning for the Poisson denoising of low-dose scanning electron microscope (SEM) images as a step in the estimation of line edge roughness (LER) and line width roughness (LWR). Our denoising algorithm applies a deep convolutional neural network called SEMNet with 17 convolutional, 16 batch-normalization and 16 dropout layers to noisy images. We trained and tested SEMNet with a dataset of 100800 simulated SEM rough line images constructed by means of the Thorsos method and the ARTIMAGEN library developed by the National Institute of Standards and Technology. SEMNet achieved considerable improvements in peak signal-to-noise ratio (PSNR) as well as the best LER/LWR estimation accuracy compared with standard image denoisers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.