Abstract

We propose the use of deep supervised learning for the estimation of line edge roughness (LER) and line width roughness (LWR) in low-dose scanning electron microscope (SEM) images. We simulate a supervised learning dataset of 100,800 SEM rough line images constructed by means of the Thorsos method and the ARTIMAGEN library developed by the National Institute of Standards and Technology. We also devise two separate deep convolutional neural networks called SEMNet and EDGENet, each of which has 17 convolutional layers, 16 batch normalization layers, and 16 dropout layers. SEMNet performs the Poisson denoising of SEM images, and it is trained with a dataset of simulated noisy-original SEM image pairs. EDGENet directly estimates the edge geometries from noisy SEM images, and it is trained with a dataset of simulated noisy SEM image-edge array pairs. SEMNet achieved considerable improvements in peak signal-to-noise ratio as well as the best LER/LWR estimation accuracy compared with standard image denoisers. EDGENet offers excellent LER and LWR estimation as well as roughness spectrum estimation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.