Abstract

Recently, deep neural networks based hashing methods have greatly improved the image retrieval performance by simultaneously learning feature representations and binary hash functions. Most deep hashing methods utilize supervision information from semantic labels to preserve the distance similarity within local structures, however, the global distribution is ignored. We propose a novel deep supervised hashing method which aims to minimize the information loss during low-dimensional embedding process. More specifically, we use Kullback-Leibler divergences to constrain the compact codes having a similar distribution with the original images. Experimental results have shown that our method outperforms current stat-of-the-art methods on benchmark datasets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.