Abstract

For large-scale image retrieval task, a hashing technique has attracted extensive attention due to its efficient computing and applying. By using the hashing technique in image retrieval, it is crucial to generate discrete hash codes and preserve the neighborhood ranking information simultaneously. However, both related steps are treated independently in most of the existing deep hashing methods, which lead to the loss of key category-level information in the discretization process and the decrease in discriminative ranking relationship. In order to generate discrete hash codes with notable discriminative information, we integrate the discretization process and the ranking process into one architecture. Motivated by this idea, a novel ranking optimization discrete hashing (RODH) method is proposed, which directly generates discrete hash codes (e.g., +1/-1) from raw images by balancing the effective category-level information of discretization and the discrimination of ranking information. The proposed method integrates convolutional neural network, discrete hash function learning, and ranking function optimizing into a unified framework. Meanwhile, a novel loss function based on label information and mean average precision (MAP) is proposed to preserve the label consistency and optimize the ranking information of hash codes simultaneously. Experimental results on four benchmark data sets demonstrate that RODH can achieve superior performance over the state-of-the-art hashing methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call