Abstract
With the advent of neuromorphic hardware, spiking neural networks can be a good energy-efficient alternative to artificial neural networks. However, the use of spiking neural networks to perform computer vision tasks remains limited, mainly focusing on simple tasks such as digit recognition. It remains hard to deal with more complex tasks (e.g. segmentation, object detection) due to the small number of works on deep spiking neural networks for these tasks. The objective of this paper is to make the first step towards modern computer vision with supervised spiking neural networks. We propose a deep convolutional spiking neural network for the localization of a single object in a grayscale image. We propose a network based on DECOLLE, a spiking model that enables local surrogate gradient-based learning. The encouraging results reported on Oxford-IIIT-Pet validates the exploitation of spiking neural networks with a supervised learning approach for more elaborate vision tasks in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.