Abstract
Cross-modal hashing has attracted increasing research attention due to its efficiency for large-scale multimedia retrieval. With simultaneous feature representation and hash function learning, deep cross-modal hashing (DCMH) methods have shown superior performance. However, most existing methods on DCMH adopt binary quantization functions (e.g., [Formula: see text]) to generate hash codes, which limit the retrieval performance since binary quantization functions are sensitive to the variations of numeric values. Toward this end, we propose a novel end-to-end ranking-based hashing framework, in this paper, termed as deep semantic-preserving ordinal hashing (DSPOH), to learn hash functions with deep neural networks by exploring the ranking structure of feature dimensions. In DSPOH, the ordinal representation, which encodes the relative rank ordering of feature dimensions, is explored to generate hash codes. Such ordinal embedding benefits from the numeric stability of rank correlation measures. To make the hash codes discriminative, the ordinal representation is expected to well predict the class labels so that the ranking-based hash function learning is optimally compatible with the label predicting. Meanwhile, the intermodality similarity is preserved to guarantee that the hash codes of different modalities are consistent. Importantly, DSPOH can be effectively integrated with different types of network architectures, which demonstrates the flexibility and scalability of our proposed hashing framework. Extensive experiments on three widely used multimodal data sets show that DSPOH outperforms state of the art for cross-modal retrieval tasks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Networks and Learning Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.