Abstract

The contribution of scattered x-rays to the acquired projection data is a severe issue in cone-beam CT (CBCT). Due to the large cone angle, scatter-to-primary ratios may easily be in the order of 1. The corresponding artifacts which appear as cupping or dark streaks in the CT reconstruction may impair the diagnostic value of the CT examination. Therefore, appropriate scatter correction is essential. The gold standard is to use a Monte Carlo photon transport code to predict the distribution of scattered x-rays which can be subtracted from the measurement subsequently. However, long processing times of Monte Carlo simulations prohibit them to be used routinely. To enable fast and accurate scatter estimation we propose the deep scatter estimation (DSE). It uses a deep convolutional neural network which is trained to reproduce the output of Monte Carlo simulations using only the acquired projection data as input. Once the network is trained, DSE performs in real-time. In the present study we demonstrate the feasibility of DSE using simulations of CBCT head scans at different tube voltages. The performance is tested on data sets that significantly differ from the training data. Thereby, the scatter estimates deviate less than 2% from the Monte Carlo ground truth. A comparison to kernel-based scatter estimation techniques, as they are used today, clearly shows superior performance of DSE while being similar in terms of processing time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.