Abstract
AbstractThe wall cycle in wall-bounded turbulent flows is a complex turbulence regeneration mechanism that remains not fully understood. This study explores the potential of deep reinforcement learning (DRL) for managing the wall regeneration cycle to achieve desired flow dynamics. To create a robust framework for DRL-based flow control, we have integrated the StableBaselines3 DRL libraries with the open-source direct numerical simulation (DNS) solver CaNS. The DRL agent interacts with the DNS environment, learning policies that modify wall boundary conditions to optimise objectives such as the reduction of the skin-friction coefficient or the enhancement of certain coherent structures’ features. The implementation makes use of the message-passing-interface (MPI) wrappers for efficient communication between the Python-based DRL agent and the DNS solver, ensuring scalability on high-performance computing architectures. Initial experiments demonstrate the capability of DRL to achieve drag reduction rates comparable with those achieved via traditional methods, although limited to short time intervals. We also propose a strategy to enhance the coherence of velocity streaks, assuming that maintaining straight streaks can inhibit instability and further reduce skin-friction. Our results highlight the promise of DRL in flow-control applications and underscore the need for more advanced control laws and objective functions. Future work will focus on optimising actuation intervals and exploring new computational architectures to extend the applicability and the efficiency of DRL in turbulent flow management.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.