Abstract

AbstractThis work presents a deep reinforcement learning (DRL) approach for procedural content generation (PCG) to automatically generate three-dimensional (3D) virtual environments that users can interact with. The primary objective of PCG methods is to algorithmically generate new content in order to improve user experience. Researchers have started exploring the use of machine learning (ML) methods to generate content. However, these approaches frequently implement supervised ML algorithms that require initial datasets to train their generative models. In contrast, RL algorithms do not require training data to be collected a priori since they take advantage of simulation to train their models. Considering the advantages of RL algorithms, this work presents a method that generates new 3D virtual environments by training an RL agent using a 3D simulation platform. This work extends the authors’ previous work and presents the results of a case study that supports the capability of the proposed method to generate new 3D virtual environments. The ability to automatically generate new content has the potential to maintain users’ engagement in a wide variety of applications such as virtual reality applications for education and training, and engineering conceptual design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.