Abstract
With the rapid development of mobile internet technology and increasing concerns over data privacy, Federated Learning (FL) has emerged as a significant framework for training machine learning models. Given the advancements in technology, User Equipment (UE) can now process multiple computing tasks simultaneously, and since UEs can have multiple data sources that are suitable for various FL tasks, multiple tasks FL could be a promising way to respond to different application requests at the same time. However, running multiple FL tasks simultaneously could lead to a strain on the device’s computation resource and excessive energy consumption, especially the issue of energy consumption challenge. Due to factors such as limited battery capacity and device heterogeneity, UE may fail to efficiently complete the local training task, and some of them may become stragglers with high-quality data. Aiming at alleviating the energy consumption challenge in a multi-task FL environment, we design an automatic Multi-Task FL Deployment (MFLD) algorithm to reach the local balancing and energy consumption goals. The MFLD algorithm leverages Deep Reinforcement Learning (DRL) techniques to automatically select UEs and allocate the computation resources according to the task requirement. Extensive experiments validate our proposed approach and showed significant improvements in task deployment success rate and energy consumption cost.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.