Abstract

Deep reinforcement learning (DRL) provides a new solution for rehabilitation robot trajectory planning in the unstructured working environment, which can bring great convenience to patients. Previous researches mainly focused on optimization strategies but ignored the construction of reward functions, which leads to low efficiency. Different from traditional sparse reward function, this paper proposes two dense reward functions. First, azimuth reward function mainly provides a global guidance and reasonable constraints in the exploration. To further improve the efficiency, a process-oriented aspiration reward function is proposed, it is capable of accelerating the exploration process and avoid locally optimal solution. Experiments show that the proposed reward functions are able to accelerate the convergence rate by 38.4% on average with the mainstream DRL methods. The mean of convergence also increases by 9.5%, and the percentage of standard deviation decreases by 21.2%–23.3%. Results show that the proposed reward functions can significantly improve learning efficiency of DRL methods, and then provide practical possibility for automatic trajectory planning of rehabilitation robot.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.