Abstract
In this study, the Deep Deterministic Policy Gradient (DDPG) algorithm, which consists of a combination of artificial neural networks and reinforcement learning, was applied to the Vertical Takeoff and Landing (VTOL) system model in order to control the pitch angle. This algorithm was selected because conventional control algorithms such as Proportional Integral Derivative (PID) controllers which cannot always generate a suitable control signal eliminating the disturbance and unwanted environment effects on the considered system. In order to control the system, training was carried out for a sinusoidal reference in the mathematical model of the VTOL system in the Simulink environment, through the DDPG algorithm with continuous action space from deep reinforcement learning methods that can produce control action values that take the structure that can maximize the reward according to a determined reward function for the purpose of control and the generalization ability of artificial neural networks. For sinusoidal reference and a constant reference, tracking error performances obtained for the pitch angle, which is the output for the specified VTOL system, were compared with the conventional PID controller performance in terms of mean square error, integral square error, integral absolute error, percentage overshoot and settling time. The obtained results are presented via the simulations studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.