Abstract
This paper reviews the current status and challenges of Deep Reinforcement Learning (DRL)-based algorithm optimisation and risk management for high-frequency trading. By analysing the potential application of Deep Reinforcement Learning in high-frequency trading, its unique advantages in algorithm optimisation, trading decision-making and risk management are discussed. Although DRL demonstrates the ability to make self-adaptive and dynamic decisions in complex market environments, it still faces many challenges such as insufficient real-time algorithmic performance, data sparsity, model overfitting, and risk management complexity in practical applications. This paper summarises the main findings of the current research and proposes directions for future research, suggesting that the application of DRL in high-frequency trading can be further enhanced by improving the algorithmic structure, dealing with data sparsity, and optimising risk management strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Computing and Electronic Information Management
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.