Abstract

AbstractThe ability to etch deep trenches in silicon while controlling not only the profile of etched features but also the etching rate, uniformity and selectivity enable us to expand the number and scope of MEMS devices. In fact, the increase of MEMS applications in different and varied fields requiring deep silicon etching or high aspect ratio structures (HARS) has even been extended to include microturbomachinery which was recently introduced as a feasible source of power generation. Many projects also place additional demands on surface morphology. Thus, the scalloping observed on vertical walls during time multiplexed deep etching (TMDE), the roughness of horizontal surfaces exposed to the glow discharge and the radius at the bottom of etched features are also relevant. Therefore, it is important to understand not only the plasma processes involved but also the dependence of response variables on operating conditions. For this purpose we have designed, performed and analyzed sets of experiments adequate to fit quadratic models. The data was collected using interferometry, atomic force microscopy (AFM), profilometry and scanning electron microscopy (SEM). The exercise involved eight etching variables and it was conducted in an inductively coupled deep reactive ion etcher (DRIE). The mapping of the dependence of response variables on dry processing conditions produced by this systematic approach provide additional insight in the plasma phenomena involved and supply practical tools to locate and optimize robust operating conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.