Abstract
To use a deep neural network (DNN) for solving the optimization problem of water/fat separation and to compare supervised and unsupervised training. The current -IDEAL algorithm for solving water/fat separation is dependent on initialization. Recently, DNN has been proposed to solve water/fat separation without the need for suitable initialization. However, this approach requires supervised training of DNN using the reference water/fat separation images. Here we propose 2 novel DNN water/fat separation methods: 1) unsupervised training of DNN (UTD) using the physical forward problem as the cost function during training, and 2) no training of DNN using physical cost and backpropagation to directly reconstruct a single dataset. The supervised training of DNN, unsupervised training of DNN, and no training of DNN methods were compared with the reference -IDEAL. All DNN methods generated consistent water/fat separation results that agreed well with -IDEAL under proper initialization. The water/fat separation problem can be solved using unsupervised deep neural networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.