Abstract

The electromagnetic response of plasmonic nanostructures is highly sensitive to their geometric parameters. In multi-dimensional parameter space, conventional full-wave simulation and numerical optimization can consume significant computation time and resources. It is also highly challenging to find the globally optimized result and perform inverse design for a highly nonlinear data structure. In this work, we demonstrate that a simple multi-layer perceptron deep neural network can capture the highly nonlinear, complex relationship between plasmonic geometry and its near- and far-field properties. Our deep learning approach proves accurate inverse design of near-field enhancement and far-field spectrum simultaneously, which can enable the design of dual-functional optical sensors. Such implementation is helpful for exploring subtle, complex multifunctional nanophotonics for sensing and energy conversion applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.