Abstract

This research presents a data-driven Neural Network (NN)-based Virtual Sensor (VS) that estimates vehicles’ Unsprung Mass (UM) vertical velocity in real-time. UM vertical velocity is an input parameter used to control a vehicle’s semi-active suspension. The extensive simulation-based dataset covering 95 scenarios was created and used to obtain training, validation and testing data for Deep Neural Network (DNN). The simulations have been performed with an experimentally validated full vehicle model using software for advanced vehicle dynamics simulation. VS was developed and tested, taking into account the Root Mean Square (RMS) of Sprung Mass (SM) acceleration as a comfort metric. The RMS was calculated for two cases: using actual UM velocity and estimations from the VS as input to the suspension controller. The comparison shows that RMS change is less than the difference threshold that vehicle occupants could perceive. The achieved result indicates the great potential of using the proposed VS in place of the physical sensor in vehicles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.