Abstract

In order to study the influences of mass variation on vibration response characteristics of ISD suspension, the ISD suspension composed of four elements is established. Body acceleration, suspension travel and dynamic tire load as the assessment criteria are studied in the time and frequency-domain simulation with sprung and unsprung mass increased and decreased by 50%, respectively. The results show that the root mean square (RMS) of body acceleration reduces and the RMS of suspension deflection increases with the increase of the sprung mass. The RMS of dynamic load increases with the increase of unsprung mass. In the low frequency (0–5 Hz), the peak value of low-frequency resonance of suspension dynamic travel and dynamic tire load increases significantly. In the high frequency (5–15 Hz), the resonant frequency decreases and amplitude increases with the increase of the unsprung mass. Compared with the traditional passive suspension, when the sprung mass is increased by 50%, the RMS of body acceleration, suspension dynamic travel and dynamic tire load are decreased by 6.92, 4.48 and 4.02%, respectively. When the unsprung mass is increased by 50%, three factors are decreased by 6.31, 20.32 and 5.96%, respectively. It indicates that ISD suspension possesses better ride comfort and handling stability when the mass varies due to the coupled vibration effect of inerter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call