Abstract

Single image super-resolution is a classic problem in computer vision. In recent years, deep learning-based models have achieved unprecedented success with this problem. However, most existing deep super-resolution models unavoidably produce degraded results when applied to real-world images captured by cameras with different focal lengths. The degradation in these images is called multiple-focal-length degradation, which is spatially variant and more complicated than the bicubic downsampling degradation. To address such a challenging issue, we propose a multi-scale feature mixture model in this paper. The proposed model can intensively exploit local patterns from different scales for image super-resolution. To improve the performance, we further propose a novel loss function based on the Laplacian pyramid, which guides the model to recover the information separately of different frequency subbands. Comprehensive experiments show that our proposed model has a better ability to preserve the structure of objects and generate high-quality images, leading to the best performance compared with other state-of-the-art deep single image super-resolution methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call