Abstract
Schizophrenia is a severe psychiatric disorder associated with a wide range of cognitive and neurophysiological dysfunctions and long-term social difficulties. In this paper, we test the hypothesis that integration of multiple simultaneous acquisitions of neuroimaging, behavioral, and clinical information will be better for prediction of early psychosis than unimodal recordings. We propose a novel framework to investigate the neural underpinnings of the early psychosis symptoms (that can develop into Schizophrenia with age) using multimodal acquisitions of neural and behavioral recordings including functional near-infrared spectroscopy (fNIRS) and electroencephalography (EEG), and facial features. Our data acquisition paradigm is based on live face-to-face interaction in order to study the neural correlates of social cognition in first-episode psychosis (FEP). We propose a novel deep representation learning framework, Neural-PRISM, for learning joint multimodal compressed representations combining neural as well as behavioral recordings. These learned representations are subsequently used to describe, classify, and predict the severity of early psychosis in patients, as measured by the Positive and Negative Syndrome Scale (PANSS) and Global Assessment of Functioning (GAF) scores. We found that incorporating joint multimodal representations from fNIRS and EEG along with behavioral recordings enhances classification between typical controls and FEP individuals. Additionally, our results suggest that geometric and topological features such as curvatures and path signatures of the embedded trajectories of brain activity enable detection of discriminatory neural characteristics in early psychosis.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have