Abstract

BackgroundThe gastropod mollusc Biomphalaria glabrata is well known as a vector for the tropical disease schistosomiasis, which affects nearly 200 million people worldwide. Despite intensive study, our understanding of the genetic basis of B. glabrata development, growth and disease resistance is constrained by limited genetic resources, constraints for which next-generation sequencing methods provide a ready solution.MethodsIllumina sequencing and de novo assembly using the Trinity program was used to generate a high-quality transcriptomic dataset spanning the entirety of in ovo development in schistosomiasis-free B. glabrata. This was subjected to automated (KEGG, BLAST2GO) and manual annotation efforts, allowing insight into the gene complements of this species in a number of contexts.ResultsExcellent dataset recovery was observed, with 133,084 contigs produced of mean size 2219.48 bp. 80,952 (60.8 %) returned a BLASTx hit with an E value of less than 10-3, and 74,492 (55.97 %) were either mapped or assigned a GO identity using the BLAST2GO program. The CEGMA set of core eukaryotic genes was found to be 99.6 % present, indicating exceptional transcriptome completeness. We were able to identify a wealth of disease-pathway related genes within our dataset, including the Wnt, apoptosis and Notch pathways. This provides an invaluable reference point for further work into molluscan development and evolution, for studying the impact of schistosomiasis in this species, and perhaps providing targets for the treatment of this widespread disease.ConclusionsHere we present a deep transcriptome of an embryonic sample of schistosomiasis-free B. glabrata, presenting a comprehensive dataset for comparison to disease-affected specimens and from which conclusions can be drawn about the genetics of this widespread medical model. Furthermore, the dataset provided by this sequencing provides a useful reference point for comparison to other mollusc species, which can be used to better understand the evolution of this commercially, ecologically and medically important phylum.Electronic supplementary materialThe online version of this article (doi:10.1186/s12879-016-1944-x) contains supplementary material, which is available to authorized users.

Highlights

  • The gastropod mollusc Biomphalaria glabrata is well known as a vector for the tropical disease schistosomiasis, which affects nearly 200 million people worldwide

  • The genus Biomphalaria and B. glabrata itself are perhaps best known for their role in the transmission of the parasites which cause schistosomiasis, a disease found in 70 countries and infecting approximately 200 million people worldwide, with a further seven hundred million people at risk [15, 17]

  • The genetic sequences of parasites which can cause schistosomiasis - Schistosoma mansoni [7], Schistosoma japonicum [53] and Schistosoma haematobium [55] have been available for several years, with B. glabrata the intermediate host of S. mansoni

Read more

Summary

Introduction

The gastropod mollusc Biomphalaria glabrata is well known as a vector for the tropical disease schistosomiasis, which affects nearly 200 million people worldwide. The genus Biomphalaria (comprising approximately 34 species) and B. glabrata itself are perhaps best known for their role in the transmission of the parasites which cause schistosomiasis (bilharzia), a disease found in 70 countries and infecting approximately 200 million people worldwide, with a further seven hundred million people at risk [15, 17] While it is not the only snail vector of this disease, B. glabrata is the best studied, with a long history of investigation, dating back over 50 years [41]. Despite the ever-growing availability of next-generation sequencing, gastropod molluscs, which represent a sizable proportion of all animal diversity with over 40,000 extant species, are still under-represented by published, publically available genome sequences This has hamstrung our attempts to understand the genetic and molecular parasite/host interactions that occur in the course of schistosomiasis

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.