Abstract
Fast and precise reconstruction algorithm is desired for for multifocal structured illumination microscopy (MSIM) to obtain the super-resolution image. This work proposes a deep convolutional neural network (CNN) to learn a direct mapping from raw MSIM images to super-resolution image, which takes advantage of the computational advances of deep learning to accelerate the reconstruction. The method is validated on diverse biological structures and in vivo imaging of zebrafish at a depth of 100µm. The results show that high-quality, super-resolution images can be reconstructed in one-third of the runtime consumed by conventional MSIM method, without compromising spatial resolution. Last but not least, a fourfold reduction in the number of raw images required for reconstruction is achieved by using the same network architecture, yet with different training data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.