Abstract

Multifocal structured illumination microscopy (MSIM) can achieve optically sectioned images with twice the diffraction limited resolution at an imaging speed of 1 Hz and an imaging depth of up to 50 μm. Compared with the traditional wide-field SIM, the MSIM has greater imaging depth and optical sectionning ability, and it is more suitable for long-term three-dimensional (3D) super-resolution imaging of living thick samples. However, the MSIM has some problems, such as slow imaging speed and complex image post-processing process. In this work, a fast super-resolution imaging method and system based on the flat-field multiplexed MSIM (FM-MSIM) is proposed. By inserting a beam shaping device into the illumination light path, the Gaussian beam is reshaped into a uniform flat-top profile, thereby improving the intensity uniformity of excitation multi-spot focal array and expanding the field of view. By elongating each diffraction limited excitation focal point four times along the <i>Y</i> direction to form a new multiplexed multifocal array pattern, the number of scanning steps is reduced, the energy utilization is improved, and then the imaging speed and signal-to-noise ratio are improved. Combined with the sparse Bayesian learning image reconstruction algorithm based on multiple measurement vector model, the image reconstruction steps are simplified, the imaging speed can be improved at least 4 times while ensuring the spatial resolution of MSIM. On this basis, the established FM-MSIM system is used to carry out the super-resolution imaging experiments on the BSC cell microtubule samples and mouse kidney slices. The experimental results prove the fast three-dimensional super-resolution imaging ability of the system, which is of great significance in developing the fast MSIM.

Highlights

  • it is more suitable for long-term

  • a fast super-resolution imaging method and system based on the flat-field multiplexed Multifocal structured illumination microscopy (MSIM)

  • the Gaussian beam is reshaped into a uniform flat-top profile

Read more

Summary

Yu Bin

一种用于线粒体受激辐射损耗超分辨成像的新型探针 Study on a novel probe for stimulated emission depletion Super-resolution Imaging of Mitochondria 物理学报. 受激辐射损耗超分辨显微成像系统研究的新进展 New advances in the research of stimulated emission depletion super-resolution microscopy 物理学报. 多焦点结构光照明显微技术 (multifocal structured illumination microscopy, MSIM) 能在 50 μm 的成像深 度内和 1Hz 的成像速度下实现两倍于衍射极限分辨率的提升, 相比传统的宽场结构光照明显微技术, 具有较 大的成像深度和层析能力, 更适合应用于厚样品的长时程三维超分辨成像. 目前, SRFM 主要可以分为受激发射损耗 (stimulated emission depletion, STED) 显微技术 [1−3]、单 分子定位显微术 (single molecule localization microscopy, SMLM)[4,5] 和结构光照明显微技术 (structured illumination microscopy , SIM)[6−10]3 类技术. 为了进一步提 升 SIM 的成像深度, 2010 年, Müller 和 Enderlein[11] 提出了一种新型点扫描结构光照明显微术, 命名为 图像扫描显微 (image scanning microscopy, ISM), 它用阵列探测器代替传统的共焦显微镜的点探测 器, 利用数字像素重定位后续图像处理技术, 在保 持高信噪比的同时将成像分辨率提升至宽场照明 成像的 1.63 倍. 为 了解决这一问题, 2012 年 York 等 [12] 提出了多焦 点结构光照明显微技术 (multifocal structured illumination microscopy, MSIM), 采用高速数字微反 射 镜 器 件 (digital micromirror device, DMD) 同 时实现多焦点结构光的产生和扫描, 通过数字像素 重定位和解卷积技术进行超分辨图像重构, 实现了 在成像深度 50 μm 内的横向约 145 nm、轴向约 400 nm 的空间分辨率和 1 Hz 时间分辨率的三维 超分辨成像, 为活体厚样品的超分辨成像提供了强 有力的工具. 在 MSIM 中 [12], 利用一个 DMD 同时实现激 发点阵的产生和数字扫描, 具体实现方式如下, 根 据 DMD 工作基本原理, 当光束以特定角度入射 DMD 面板时, 每个处于工作 on 状态的微反射镜 都在样品面对应位置产生一个衍射受限激发点, 只 要将一些特定位置的微反射镜处于工作 on 状态就 能在样品面上获得规则的多焦点激发模式. 实际操 作时, 通过控制软件加载相同尺寸的黑白图片来决 定 DMD 上微反射镜的工作状态, 当加载的图片黑 白像素点的位置发生变化时对应的 DMD 微反射 镜工作状态也产生相应的改变, 从而形成我们想要 的激发模式. 然而, 在最初的 MSIM 的激发点阵图 案中, 每个激发点采用 DMD 上“1 × 1”处于 on 状 态的像素构成, 考虑到图像信噪比, 设置点阵间隔 为 14 pixels×16 pixels, 则需要采集 224 幅点阵源 图像来重构一幅超分辨图像; 对于 480 × 480 视

Normalized intensity
Normalized intensity Normalized intensity
WF MSBL
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call