Abstract
Automatic recommendation has become an increasingly relevant problem to industries, which allows users to discover new items that match their tastes and enables the system to target items to the right users. In this paper, we propose a deep learning (DL) based collaborative filtering framework, namely, deep matrix factorization (DMF), which can integrate any kind of side information effectively and handily. In DMF, two feature transforming functions are built to directly generate latent factors of users and items from various input information. As for the implicit feedback that is commonly used as input of recommendation algorithms, implicit feedback embedding (IFE) is proposed. IFE converts the high-dimensional and sparse implicit feedback information into a low-dimensional real-valued vector retaining primary features. Using IFE could reduce the scale of model parameters conspicuously and increase model training efficiency. Experimental results on five public databases indicate that the proposed method performs better than the state-of-the-art DL-based recommendation algorithms on both accuracy and training efficiency in terms of quantitative assessments.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have