Abstract

<h2>Abstract</h2> Like other robot learning from demonstration (LfD) approaches, deep-LfD builds a task model from sample demonstrations. However, unlike conventional LfD, the deep-LfD model learns the relation between high dimensional visual sensory information and robot trajectory/path. This paper presents a dataset of successful needle insertion by da Vinci Research Kit into deformable objects based on which several deep-LfD models are built as a benchmark of models learning robot controller for the needle insertion task.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.