Abstract

Hall effect, deep level transient spectroscopy (DLTS) and optical absorption measurements were employed in concert to determine the position of the vanadium acceptor level in vanadium and nitrogen doped 6H and 4H SiC. Hall effect results indicate that the acceptor position in 4H SiC is at 0.80 eV beneath the conduction band edge, and 0.66 eV for the 6H polytype. The DLTS signature of the defect in the 4H polytype showed an ionization energy of 0.80 eV and a capture cross section of 1.8×10−16 cm−2. The optical absorption measurements proved that the levels investigated are related to isolated vanadium, and therefore the vanadium acceptor level. Based on the DLTS measurements and secondary ion mass spectroscopy data, the maximum solubility of vanadium in SiC was determined to be 3.0×1017 cm−3. At these incorporation limits and with the depth of the level, the vanadium acceptor level could be used in the creation of semi-insulating silicon carbide.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call