Abstract

InP crystals were grown by the horizontal Bridgman (HB) method under a controlled ambient phosphorus vapor pressure. The relationship between the phosphorus vapor pressure and crystal defects was investigated. Crystals grown under a lower phosphorus vapor pressure have an In-rich composition. P-vacancy related photoluminescence (PL) emission at 1.1 eV decreased in growth under a higher phosphorus vapor pressure. The ion density at Ec-1.1 eV also decreased according to results of photocapacitance measurement. It was considered that crystals became a P-rich composition from an In-rich one by growth under higher phosphorus vapor pressure of 23 or 29 atm. This corresponds to the results of coulometric titration analysis. In the InP crystal grown under the phosphorus pressure of 33 atm, the density of the deep level was undetectable by PL or photocapacitance measurement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.