Abstract
The High Efficiency Video Coding standard and its screen content coding extension provide superior coding efficiency compared to predecessor standards. However, this coding efficiency is achieved at the expense of very complex encoders. One major complexity driver is the comprehensive rate distortion (RD) optimization. In this paper, we present a deep learning-based encoder control which replaces the conventional RD optimization for the intra prediction mode with deep convolutional neural network (CNN) classifiers. Thereby, we save the RD optimization complexity. Our classifiers operate independently of any encoder decisions and reconstructed sample values. Thus, no additional systematic latency is introduced. Furthermore, the loss in coding efficiency is negligible with an average value of 0.52% over HM-16.6+SCM-5.2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.